If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4a^2-60a-40=0
a = 4; b = -60; c = -40;
Δ = b2-4ac
Δ = -602-4·4·(-40)
Δ = 4240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4240}=\sqrt{16*265}=\sqrt{16}*\sqrt{265}=4\sqrt{265}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-4\sqrt{265}}{2*4}=\frac{60-4\sqrt{265}}{8} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+4\sqrt{265}}{2*4}=\frac{60+4\sqrt{265}}{8} $
| 2t/7×4=16 | | 2xx3=x | | 5/2+6=7/4x-8 | | 9-10n=41 | | -2(x-5)+10=-3(x=2)=x | | x(x^2+9x+3)=-5(2x+1) | | x(x^2+9x+3)=-5(2x+10 | | A=(w+5)(2w) | | 7x+8/2=9x+8 | | 3y-7y=19 | | 7/4x+1/2=3/2x | | 5.6(15r-4.4)=73.1 | | 4(8x-1)=3(2x+9) | | 4x+6-6x=13-16x+14x-7 | | 21x-5-18x+3=14x-9-11x+14 | | 20-4a=6-a | | 3x+8-5x=17-13x+11x-9 | | 6y+40=720 | | 3x+8-5x=17-13x+11-9 | | -10+x=x-19 | | 4t-3=17-4 | | 4y-5+y+39=7y+40-5y | | x-12=8+4 | | 8n2+320=0 | | (4z-6)(1-z)=0 | | 4/3x+(5*7)=3/2x | | 41y=8(5y-2( | | 8+6x=-4+3x | | 6x+7=4x+11+38 | | 24+12x=48x | | -3(y+3)-8=-6+2y+9 | | -4h(h+2)=h(2h-3) |